88126101

CHEMISTRY

HIGHER LEVEL

PAPER 1

Friday 9 November 2012 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].
The Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic number Element													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$			Relative								$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { C0 } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \\ \hline \end{array}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{array}{\|c} 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{array}{\|c} 79 \\ \mathbf{A u} \\ 196.97 \end{array}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															

1. What is the number of ions in 0.20 mol of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$?
A. 8.0×10^{-1}
B. 1.2×10^{23}
C. 4.8×10^{23}
D. 2.4×10^{24}
2. The equation for the reduction of iron(III) oxide is:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

What mass of carbon dioxide, in g , is produced by the complete reduction of 80 g of iron(III) oxide?
A. 44
B. 66
C. 88
D. 132
3. $3.0 \mathrm{dm}^{3}$ of ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$, is mixed with $3.0 \mathrm{dm}^{3}$ of hydrogen and ignited. The equation for the reaction that occurs is shown below.

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

Assuming the reaction goes to completion and all gas volumes are measured at the same temperature and pressure, what volume of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, in dm^{3}, is formed?
A. 1.5
B. 2.0
C. 3.0
D. 6.0
4. Which ion would be deflected the most in a mass spectrometer?
A. ${ }^{35} \mathrm{Cl}^{+}(\mathrm{g})$
B. ${ }^{37} \mathrm{Cl}^{+}(\mathrm{g})$
C. ${ }^{35} \mathrm{Cl}^{2+}(\mathrm{g})$
D. ${ }^{37} \mathrm{Cl}^{2+}(\mathrm{g})$
5. Which of the graphs below shows the successive logarithmic ionization energies of phosphorus?
A.

B.

C.

D.

6. Which combination is correct for the properties of the alkali metals from Li to Cs ?
A.

Atomic radius	Melting point	First ionization energy
increases	increases	increases
increases	decreases	decreases
increases	increases	decreases
decreases	decreases	increases

7. Which equation represents a reaction that occurs under normal conditions?
A. $2 \operatorname{LiBr}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow 2 \operatorname{LiI}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
B. $\quad 2 \mathrm{KF}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{F}_{2}(\mathrm{aq})$
C. $\quad 2 \mathrm{LiCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow 2 \operatorname{LiI}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
D. $2 \mathrm{KBr}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
8. Which combination of statements about the oxides of period 3 elements is correct?
A.

State at room temperature		Electrical conductivity in molten state			
$\mathrm{Na}_{2} \mathbf{O}$	$\mathbf{A l}_{2} \mathrm{O}_{3}$	$\mathbf{P}_{4} \mathbf{O}_{10}$	$\mathbf{N a}_{2} \mathbf{O}$	$\mathbf{A l}_{2} \mathbf{O}_{3}$	$\mathbf{P}_{4} \mathbf{O}_{10}$
solid	solid	gas	good	good	good
solid	solid	solid	good	good	poor
solid	liquid	liquid	good	poor	poor
solid	solid	solid	poor	poor	good

9. Which is an ionic compound?
A. $\quad \mathrm{Mg}_{3} \mathrm{~N}_{2}$
B. $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
C. SiO_{2}
D. SF_{6}
10. Which molecule is polar?
A.
B.
C.

Molecule	Shape
CO_{2}	linear
SO_{3}	trigonal planar
CCl_{4}	tetrahedral
SO_{2}	bent (V-shaped)

11. Which intermolecular forces are present in $\mathrm{HI}(1)$?
I. Hydrogen bonding
II. Dipole-dipole forces
III. Van der Waals' (London dispersion) forces
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
12. In the molecule SF_{4}, which are the correct bond angles?

A.

$\boldsymbol{\alpha} /{ }^{\circ}$	$\boldsymbol{\beta} /{ }^{\circ}$
180	120
187	103
187	120
180	90

13. Which substances have delocalized electrons in their structure?
I. Ethanal
II. Ozone
III. Benzene
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
14. A 5.00 g sample of a substance was heated from $25.0^{\circ} \mathrm{C}$ to $35.0^{\circ} \mathrm{C}$ using $2.00 \times 10^{2} \mathrm{~J}$ of energy. What is the specific heat capacity of the substance in $\mathrm{J} \mathrm{g}^{-1} \mathrm{~K}^{-1}$?
A. 4.00×10^{-3}
B. 2.50×10^{-1}
C. 2.00
D. 4.00
15. Using the equations below:

$$
\begin{array}{ll}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-390 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\ominus}=-286 \mathrm{~kJ} \\
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\ominus}=-890 \mathrm{~kJ}
\end{array}
$$

what is ΔH^{\ominus}, in kJ , for the following reaction?

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})
$$

A. -214
B. -72
C. +72
D. +214
16. Which is the best definition of electron affinity?
A. The ability of an atom to attract the electrons in a covalent bond.
B. The attraction of an atom for an electron.
C. The enthalpy change when an atom gains an electron.
D. The enthalpy change when a gaseous atom gains an electron.
17. Which is the best definition of the standard state?
A. The standard state of a solid is the most pure form of the solid.
B. The standard state of a solid is the most pure form of the solid at $298^{\circ} \mathrm{C}$.
C. The standard state of a gas is the most pure form of the gas at $298^{\circ} \mathrm{C}$.
D. The standard state of a gas is the most pure form of the gas at a pressure of 100 kPa .
18. Consider the following information:

$$
\begin{aligned}
& \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \Delta H=+179 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta S=+161.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

What happens to the spontaneity of this reaction as the temperature is increased?
A. The reaction becomes more spontaneous as the temperature is increased.
B. The reaction becomes less spontaneous as the temperature is increased.
C. The reaction remains spontaneous at all temperatures.
D. The reaction remains non-spontaneous at all temperatures.
19. Which piece of equipment could not be used in an experiment to measure the rate of this reaction?

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

A. A colorimeter
B. A gas syringe
C. A stopwatch
D. A pH meter
20. Which graph would be produced by a $2^{\text {nd }}$ order reaction if the rate equation is rate $=k[\mathrm{X}]^{2}$?
A.

B.

C.

D.

21. Which step in a multi-step reaction mechanism will be rate-determining?
A. The first step
B. The last step
C. The step with the highest activation energy
D. The step with the lowest activation energy
22. Iron(III) ions, Fe^{3+}, react with thiocyanate ions, SCN^{-}, in a reversible reaction to form a red solution. Which changes to the equilibrium will make the solution go red?

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons & {[\mathrm{FeSCN}]^{2+}(\mathrm{aq})} \\
\text { Yellow } & \text { Red }
\end{array}
$$

I. Increasing the temperature
II. Adding FeCl_{3}
III. Adding a catalyst
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
23. Consider the following reversible reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

What is the value of K_{c} for the reaction when the equilibrium concentrations are $\left[\mathrm{NO}_{2}\right]=4.0 \mathrm{moldm}^{-3}$ and $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.0 \mathrm{~mol} \mathrm{dm}^{-3}$?
A. 0.25
B. 0.50
C. 2.0
D. 4.0
24. Which substance can act as a Lewis acid but not as a Brønsted-Lowry acid?
A. HCl
B. $\mathrm{CH}_{3} \mathrm{COOH}$
C. BF_{3}
D. $\mathrm{CF}_{3} \mathrm{COOH}$
25. Which row correctly describes $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$?

	$\mathbf{p H}$	Colour in universal indicator solution	Electrical conductivity
A.	14	purple	good
B.	10	green	poor
C.	14	red	good
D.	10	blue	poor

26. For pure water at $50^{\circ} \mathrm{C}, K_{\mathrm{w}}=5.48 \times 10^{-14}$. What is the pH of this water?
A. 4.8
B. 6.6
C. 7.0
D. 8.2
27. Which is the strongest acid?
A.

Acid	$\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$
chloroethanoic	2.87
iodoethanoic	3.18
benzoic	4.20
pentanoic	4.83

28. Which salts will dissolve in water to give solutions with a pH above 7?
I. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
II. $\mathrm{CH}_{3} \mathrm{COONa}$
III. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
29. During a titration, $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide is added to $0.1 \mathrm{moldm}^{-3}$ ethanoic acid. Which indicator would be the best to use as an end point indicator in this titration?
A.

Indicator	$\mathbf{p H}$ range of indicator
methyl orange	$3.2-4.4$
bromophenol blue	$3.0-4.6$
bromothymol blue	$6.0-7.6$
phenolphthalein	$8.2-10.0$

30. What is the correct systematic name of MnO_{2} ?
A. Manganese(II) oxide
B. Manganese(IV) oxide
C. Magnesium(II) oxide
D. Magnesium(IV) oxide
31. A voltaic cell is made by connecting zinc and lead half-cells. The overall equation for the reaction occurring in the cell is shown below.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{Zn}^{2+}(\mathrm{aq})
$$

Which statements are correct when the cell produces electricity?
I. The zinc is oxidized.
II. Electrons move from zinc to lead in the external circuit.
III. The mass of the lead electrode increases.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
32. Consider the following standard electrode potential values:

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.77 \mathrm{~V} \\
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & E^{\ominus}=+1.51 \mathrm{~V}
\end{array}
$$

What is the cell potential, in V , for this reaction?

$$
\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+5 \mathrm{Fe}^{3+}(\mathrm{aq})
$$

A. -2.28
B. -0.74
C. +0.74
D. +2.28
33. Consider the following standard electrode potential values:

$$
\begin{array}{ll}
\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ca}(\mathrm{~s}) & E^{\ominus}=-2.87 \mathrm{~V} \\
\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{~s}) & E^{\ominus}=-0.45 \mathrm{~V} \\
\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{~s}) & E^{\ominus}=-0.26 \mathrm{~V} \\
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.77 \mathrm{~V}
\end{array}
$$

Which reaction is spontaneous?
A. $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ca}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq})$
B. $3 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq})$
C. $\mathrm{Fe}(\mathrm{s})+2 \mathrm{Fe}^{3+}(\mathrm{aq}) \rightarrow 3 \mathrm{Fe}^{2+}(\mathrm{aq})$
D. $\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq})$
34. Which compound has the lowest boiling point?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
B. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OH}$
C. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$
D. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
35. Which compound would decolourize bromine water in the dark?
A. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$
D. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
36. Which statement about the oxidation of alcohols is correct?
A. Oxidation of propan-1-ol produces propanone.
B. Mild oxidation of butan-1-ol produces butanal.
C. Strong oxidation of pentan-2-ol produces pentanoic acid.
D. Mild oxidation of butan-2-ol produces butanal.
37. Which halogenoalkane will react most quickly with sodium hydroxide?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
38. Which would be the main product of the reaction between 1-bromobutane and concentrated sodium hydroxide in hot ethanol?
A. $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CHCHCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$
39. Which molecules can react to form a condensation polymer with a dicarboxylic acid such as hexanedioic acid?
I. $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
II. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
III. $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
40. $50 \mathrm{~cm}^{3}$ of copper(II) sulfate solution is measured into a plastic cup using a $100 \mathrm{~cm}^{3}$ measuring cylinder. Excess zinc powder is added and the temperature rise that occurs is measured with a $-10^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$ thermometer. The enthalpy change for the reaction is then calculated. Which statement is correct?
A. Systematic error will be reduced by repeating the experiment several times and averaging the results.
B. Random error will be reduced by insulating the plastic cup.
C. Random error will be reduced by using a $50 \mathrm{~cm}^{3}$ graduated pipette instead of a measuring cylinder.
D. Systematic error will be increased by using a larger volume of copper(II) sulfate solution.

